Slug Diplomacy

Detailed Design Document II (DDD2)

Version 1.0

5 March 2002

	Team Member
	Email
	Role

	Eric Sunalp

Andrew Woodruff

Matthew Malone

Ian Turner
	woodruff@cats.ucsc.edu
malone@cats.ucsc.edu
vectro@pipeline.com
	Putting everything together. Data Dictionary

Data Dictionary

All Class Diagrams and Data Dictionary

All Sequence Diagrams and Data Dictionary

Configuration Change Record (CCR)

	Date
	Version
	Changes/Additions
	Responsible Person

	03/05/2002
	1.0
	Initial release of DDD2
	Eric, Ian, Matthew and Andrew

51.
CLASS DIAGRAMS

1.1
Class Descriptions
5
1.1.1
Client Classes Description
5
1.1.2
Drop Down Classes Description
6
1.1.3
GameState Classes Description
7
1.1.4
Net Classes Description
7
1.1.5
Order Classes Description
8
1.2
Concept Diagram
8
1.3
Implementation Association Diagram for the Client
9
1.4
Implementation Association Diagram for the Server
10
1.5
GameState Inheritance
11
1.6
Order Inheritance
12
1.7
Client Structure Diagram
13
1.8
Server Structure Diagram
13
2
SEQUENCE DIAGRAMS
14
2.1
Start Game
14
2.2
Stop Game
14
2.3
Selecting a Player for Chat Directly
15
2.4
Selecting all Players for Chat
15
2.5
Sending a Chat Message
15
2.6
Receiving a Chat Message
16
2.7
Entering a Move
16
2.8
Accepting a Move
17
2.9
Ending a Turn
17
2.10
Informed of Another Player Ending Their Turn
18
2.11
Adding or Removing Armies
18
2.12
Accepting the Addition or Removal of Armies
18
3
DATA DICTIONARY
19
3.1
AdjOrder
19
3.1.1
Attributes
19
3.1.2
Methods
19
3.2
CliApp
19
3.2.1
Attributes
19
3.2.2
Methods
21
3.3
CliGame
23
3.3.1
Attributes
23
3.3.2
Methods
23
3.4
CliGameState
25
3.4.1
Attributes
25
3.4.2
Methods
25
3.5
CliNet
26
3.5.1
Attributes
26
3.5.2
Methods
26
3.6
CliOrderDrop
27
3.6.1
Attributes
27
3.6.2
Methods
27
3.7
CliOrderDropDip
28
3.7.1
Attributes
28
3.7.2
Methods
28
3.8
CliOrderDropRet
28
3.8.1
Attributes
28
3.8.2
Methods
29
3.9
DipOrder
29
3.9.1
Attributes
29
3.9.2
Methods
29
3.10
GameState
30
3.10.1
Attributes
30
3.10.2
Methods
30
3.11
InOut
31
3.11.1
Attributes
31
3.11.2
Methods
32
3.12
Order
32
3.12.1
Attributes
32
3.12.2
Methods
32
3.13
RetOrder
33
3.13.1
Attributes
33
3.13.2
Methods
33
3.14
Round
33
3.14.1
Attributes
33
3.14.2
Methods
33
3.15
Server
33
3.15.1
Attributes
33
3.15.2
Methods
34
3.16
ServerGame
34
3.16.1
Attributes
34
3.16.2
Methods
34
3.17
ServerGameState
35
3.17.1
Attributes
35
3.17.2
Methods
35
3.18
ServerReader
36
3.18.1
Attributes
37
3.18.2
Methods
37
3.19
Writer
37
3.19.1
Attributes
37
3.19.2
Methods
38

Figure 1. Sequence diagram for starting a game
14
Figure 2. Sequence diagram for stopping a game
14
Figure 3. Sequence diagram for selecting a player for chat directly
15
Figure 4. Sequence diagram for selecting all players for chat
15
Figure 5. Sequence diagram for sending a chat message
15
Figure 6. Sequence diagram for receiving a chat message
16
Figure 7. Sequence diagram for entering a move
16
Figure 8. Sequence diagram for accepting a move
17
Figure 9. Sequence diagram for ending a turn
17
Figure 10. Sequence diagram for informing another player of ending a turn
18
Figure 11. Sequence diagram for adding or removing armies
18
Figure 12. Sequence diagram for accepting the addition or removal of armies
18

1. CLASS DIAGRAMS
1.1 Class Descriptions

1.1.1 Client Classes Description

[image: image1.png]Cliapp
rom deteut

action_Choice: Choice
action1_Label: Label
action1_List: List
action2_Choice: Choice
action2_Label: Label
action3_Choice: Choice
action3_Label: Label
actiond_Choice: Choice
actiond_Label: Label

bCalor: Color

buffer Image

cGreen: Color
chat_TextField: TextField
cOrange: Color

cPurple: Color

cRed: Color

cYellow: Color

done_Button: Button
drawiMap_lmage: Image[][]
endTum_Button: Button
gBuffer: Graphics
homeSupplyDepot: Image
imageWaiter: ImageWaiter
mapTracker: MediaTracker
map_lmage: Image
messages_TextArea: TextArea
moves_TextArea: TextArea
nurmPlayers: int

REGIONS: int
selectAll_Button: Button
send_Button: Button
space_lmage: Image]
supplyDepot: Image
supplyDepotPlacement: int[][]
tearm_Checkbox: Checkbox[]
tearn_narne: Label[]

+actionPerformed(default ActionEvent)
+addPlayer(nt, default String)
+cteateComponents()

sereateGUIY

+destroy)

+drawSupplyDepots(
+handleEvent(default Evert): boolean
+init)

+itemStateChanged(default emEvert)
+oadimages()

+makeSpacelmages()

+paint(defauh Graphics)
+printChat(defauh String)
+pintEtror{default String)
+piintMove(defaut String)

tedraw()

tedrawlmages()

sternovePlayer(int)

+start)

+stantGUIQ

+stop()

+update(default Graphics)

~updateDropdown(default Choice, default Label, defaut CliOrderDrop, int)

+updateDropdowns()

ImageWaiter
[————
focalto package)

+run)

changeColor
(rom deteut
focalto package)
nurmber. int
+changeColorfint)
+iterRGEB(int, int, int) int

Player
rom deteut
focalto package)
+playerlD: int
+playerName: String

+Player(int, defaut String)

1.1.2 Drop Down Classes Description

[image: image2.png]CliOrderDrop
rom deteut

#dropDown: in[][]
#abel: Stingl]
#needsUpdate: boolean]
#selection: int]]

#state: CliGameState

+CliOrderDrop(defaut CliGameState, int)
+dropdownChanged(int): boolean
+enterDropdownSelection(nt, int)
+getDropdownContents{iny): Stringf]
+getDropdownLabel(int): String
+getOrder(): Order
+isDropdownActive(int): boolean

CliOrderDropDip
rom deteut

—maveNames: Stringl

+CliOrderDropDip(default CliGameState)
+enterDropdownSelection(nt, int)

~findOrders(int, Order Type)

+getDropdownContents(int): String]

+getOrder): Order

~lookupNarnes(int], default String]], default String): Stringl]
~lookupNarmes(int[], default String[}: Stringl]
~updateArmy()

~updateDest()

~updateOrderType(

~updateSupportAct)

~updateSupportee()

1.1.3 GameState Classes Description

[image: image3.png]GameState
ron ety

CliGameState
ron ety

+adjacent: boolear]
#arrmies: int]]

+depot: boolear]
yetReachableSpacesMemoberno: i
+homeSupplyDepots: i
#numPlayers: int

+numSpaces: int

#playerDs: boolean]

+spaceNames: Sting

#spaceOwner. int]]

#urm int

gpoReset: boolean
id: int

+GameState(int)
+addArmy(int)

~buildAdjacencyList() boolear]
~buildDepotList() boolear]
~buildHomeDepotList(): int]
~buildSpaceNames(): String]
+deleteArmy(int)

#yetAdjacentSpaces(int) int]]
+getNextRaund(: Round
#getReachableSpaces(int, in): nt[]
~getReachableSpacesDFS(int, int, boolean): int[]
~getReachableSpacesMerma(int, int): int[]
+getRound(: Round
+getSpaceNameByNumber(nt): String
+getSpaceNumberByNarme(default String): int
+getSpaceOwner(nt): int

+getTum): int

+moveArmy(in, int, int): boolean
+moveAmy(in, int): boolean
+setPlayerActive(int)

+setPlayerinActive(int)

+CliGameState(int, int)
+addArmy(int)

+deleteArmy(int)

+getAmy(int): int

+getPlayerAnmies(; int[]

+getPlayerArmies(int) int]]
+getPossibleHoldOrders(nt): DipOrder(]
+getPossibleMoveOrders(int): DipOrder(]
+getPossibleOrders(int, default Order§Type): DipOrder(]
+getPossibleOrders(int): DipOrder]
+getPossibleOrders(): DipOrder]
+getPossibleSupportOrders(nt): DipOrder(]
+getPossibleSupportOrdersint, int): DipOrder(]
+moveAmy(in, int): boolean

+moveAmny(in, int, int): boolean
+setRound(default Round)

~setupGpoMerna()

RoundChange

Round (imerdassofdefautsemercamesits)
o deut) re—
il

+losses: inf{[]
+moves: in[][]
—ID: String +orderPlayer. int]]
—~Round(default String)

+oString(): String

ServerGameState
ron ety

~endedTum: boolean]]
—lostArmies: int]]

+SenverGameState(nt)
+endRound(: ServerGameState RoundChange
~endRoundAdjustment(): ServerGameState. RoundChange
~endRoundDiplomacy(): ServerGameState RoundChange
~endRoundResolution(): ServerGameState RoundChange
+endTum(nt): boolean

~identifySuccess(nt, boolean], default Boolean]], boolean], int[], int[)
+makeOrder(int, default Order): boolean

+orderOK(int, default Order): boolean

~resetOrders()

CliGame ServerGame
rom et rom et

—myid: int
—nurPlayers: int

defauliumPlayers: int
newline: String

orderSuccess: boolean]]

—nurmPlayers: int
+CliGame(default CliApp)
+addPlayer(nt)
+atmyChange(int, in, int)
+getHomeSupplyDepots(): int][J]
+gethyld(): int

+getOrderDrop(: CliorderDrop
+getRegionColor(int): int
+getSupplyDepots(: boolean]
+pintEror{default String)
stermovePlayer(int)

+sethyld(nt)
+setPlayerCount(int)

+SenverGame()
+SemverGame(int)

+getNumPlayers(; int

tecieveEndTum(int)

stecieveOrderfint, default Order)
tegisterewReader(default OutputStream, int)
+sendChat(int, boolean], default String)
+sendEntor(int, default String)
~tryWirite(boolean], default String): boolean
—tryWrite(int, default String): boolean
—tryWirite All(default String): boolean
+unregisterReader(int)

1.1.4 Net Classes Description

[image: image4.png]CliNet
rom ety

~endiine: String
—nurPlayers: int
—port int

~stHost: String

+CliNet(defaut Cliapp, default CliGame, default URL)
+CliNet(defauh Cliapp, default CliGame, default URL, int)
~connect() boolean

+1un)

~sendAck(): boolean

+sendChat(default String, boolean(]): boolean
~sendDenied(): boolean

+sendDone(): boolean

+sendOrder(default Order): boolean

~takeAction(default String)

Writer
rom ety

~exception: I0Exception
~inputBufer: StringBufler
~outputBuffer: StringBuffer
—writer: BufferedWiiter

+Whiter(default OutputStrearn)
—inputLength(: int

~rebuf)

+1un)

swrite(default String)

InOut
rom ety

—in: BufleredReader
—printWriter: PrintWriter
—socket: Sacket

+nOut(default String, int)
+elose()

+piintin(defaut String)
teadLine(): String
swrite(default String)

ServerReader
(rom deteut

—er String

—input: InputStrearn

—f String

—myNum: int

+SenverReader(default Socket, int, defauh ServerGarme)
~parseChatMessage(defaut String)
—parseOrderMessage(defaut String)

+1un)

~takeAction(default String)

Server
rom ety

defauliListeningPort int
defauliMaxConnections: int

+main(default Stringl

1.1.5 Order Classes Description

[image: image5.png]Order AdjOrder DipOrder RetOrder e

rem ity (rom ey iy (ot [—
#army: int {final} G=p {final} inaly
P =i bt ::Z:‘pn‘:‘amn it ~dest: int —ID: String
#getNextint(default StringTokenizer): int +AdiOrder(int, boolean) +RetOrder(int, inf) +oString(): String
+getType(: Order Type +isAdd(): boolean +DipOrder(int) +getDest(): int
+oString(): String +isRemove(): boolean G,) toString(): String
+valueOf(default String): Order +oString(): String +DipOrder(int, int) +valueOf(default String): Order

+ualusOffdefault String): Order | 4 getDest(; int
+getSupportAction(): int
+oString(): String
+walueOffdefault String): Order

1.2 Concept Diagram

[image: image6.png]Clipp

CliGame

Concept Diagram

Server

Server Game

1.3 Implementation Association Diagram for the Client

[image: image7.png]Implementation Association Diagram for the client

Order sentireceived from server

Order

Clipp instantiates a CliNet
to with server

Order to send to

ItnageWaiter

Data channel to server

Player networking
i
Order
CliApp
changeColor

CliNetNes a ref to CliGame,
1o ulate game data

liApp instantiates CliOrderDrop

CliGame

Many order instances of
oves tmade by players

a ChiCame to
handle th
clheEme e configuration of
dropdown mems to display
valid moves to user
Holds cient
fme day] ygamestate

arrovw like this means
[being instantianted.

A
[reference back to an

Attached classes are inner
classes of the larger class

A class that is pointed to by an

that it is

arrow like this indicates a

abject.

1.4 Implementation Association Diagram for the Server

[image: image8.png]Implementation Association Diagram for the server

Server

ServerReader

Reads data
from clients

Server instantates a
ServerCame to
Holds server
tandle the game
ServerGame - 20
Orders
from clients
Wiier

(Server has one of

each for each client)

" Writes data
1o clients

1.5 GameState Inheritance

[image: image9.png]CliGameState
ron ety

~currentOrders: Order[]
gpoAl: DipOrder]
gpoAmny: DipOrder(][]
gpoMove: DipOrder(][
gpoReset: boolean
gpoSupport: DipOrder(][]
gpoSupportAll: DipOrder(][]
id: int

+CliGameState(int, int)
+addArmy(int)

+deleteArmy(int)

+getAmy(int): int

+getPlayerAnmies(; int[]

+getPlayerArmies(int) int]]
+getPossibleHoldOrders(nt): DipOrder(]
+getPossibleMoveOrders(int): DipOrder(]
+getPossibleOrders(int, default Order§Type): DipOrder(]
+getPossibleOrders(int): DipOrder]
+getPossibleOrders(): DipOrder]
+getPossibleSupportOrders(nt): DipOrder(]
+getPossibleSupportOrdersint, int): DipOrder(]
+moveAmy(in, int): boolean

+moveAmny(in, int, int): boolean

+setRound(default Round)

~setupGpoMerna()

GameState
ron ety

+adjacent: boolear]
#arrmies: int]]

+depot: boolear]
yetReachableSpacesMemoberno: i
+homeSupplyDepots: i
#numPlayers: int

+numSpaces: int

#playerDs: boolean]

#round: Round

+spaceNames: Sting

#spaceOwner. int]]

#urm int

+GameState(int)
+addArmy(int)

~buildAdjacencyList() boolear]
~buildDepotList() boolear]
~buildHomeDepotList(): int]
~buildSpaceNames(): String]
+deleteArmy(int)

#yetAdjacentSpaces(int) int]]
+getNextRaund(: Round
#getReachableSpaces(int, in): nt[]
~getReachableSpacesDFS(int, int, boolean): int[]
~getReachableSpacesMerma(int, int): int[]
+getRound(: Round
+getSpaceNameByNumber(nt): String
+getSpaceNumberByNarme(default String): int
+getSpaceOwner(nt): int

+getTum): int

+moveArmy(in, int, int): boolean
+moveAmy(in, int): boolean
+setPlayerActive(int)

+setPlayerinActive(int)

~currentOrders: Order|
~endedTum: boolean]]
—lostArmies: int]]

+SenverGameState(nt)

ServerGameState
ron ety

1

+endRound(: ServerGameState RoundChange

~endRoundAdjustment

+endTum(nt): boolean
~identifySuccess(nt, b
+makeOrder(int, defau

(: ServerGameState RoundChange
~endRoundDiplomacy(): ServerGameState RoundChange
~endRoundResolution(): ServerGameState RoundChange

ooleanf], default Boolean], boolean], intf], int[})

It Order): boolean

+orderOK(int, default Order): boolean

~resetOrders()

orestess
2

RoundChange
(et defeutemerGanesi)

+Hosses: int[J[]
+moves: int[]]
sorderPlayer. int]]
+orders: Order]]
orderSuccess: boolean]]

1.6 Order Inheritance

[image: image10.png]Order

o deut) Type
#amy: int (imerdassofdefauonder)
> iy
+getArmy(): int T T bpeden

—ID: String 04
+oString(): String

#getNexini(defaut StringTokenizer) int | e
getType(: Order Type

+oString(: Stiing

+yalusOffdefaul Sting): Order

“SURPORT
AdjOrder DipOrder RetOrder
(ot (ot (ot
i) ey ey
—add: boolean dest: int —dest: int
+AdjOrder(int, boolean) S O +RetOrder(int, int)
+isAdd(): boolean +DipOrder(in) +getDest(): int
+isRemave() boolean DipOrdernt, int, in) +HoSiring(): String
HtoSting(: Sting iz g +4alueOfefaul Sting): Order.
+ualueOf{defaull Siring): Order LgetDestg; nt

+getSupportAction(): int
+oString(): String
+walueOffdefault String): Order

1.7 Client Structure Diagram

[image: image11.png]SPaysess

PRy

orders
. -
’ -7

«cpeatess
P ste -~

T Tasses LE]
TEDJLSTIENT
TDFLOMACY

RESOLUTION
S‘g
0.1 wrier

1.8 Server Structure Diagram

[image: image12.png]Server
o deut)

\ Round

ServerGame o ServerGameState rom i

o deut) 7,% o deeut) ety |2

cubria_smneband J

2 SEDJUSTHENT
asess SDPLOMACY
i ~ SRESGLUTION
o o
, Nowiters asess Order |, RoundChange

e o (Fomdefu) | oo (et of et Senarcameit)

o deut) rom ety

2 SEQUENCE DIAGRAMS

2.1 Start Game

[image: image13.png]CliApp:
ItemListener

Browses to
applet

Note: The GUT is not drawn until we receive NUMP and
CLID messages from the server

CliGame CliGameState CiNet
ClGamet) connect
CIN 1o 5

- 0@ e
selPlayerCount() [Trom Server
-« 2323
seiMyldl) from Server
CliGameState

[StanGuIQ) O il

Figure 1. Sequence diagram for starting a game

2.2 Stop Game

[image: image14.png]Cliep CiNet

Browses U stop() D
elsewhere or

closes browser Note: stop() is called by the browser when the client is to
window stop running.

Note: CliNet.stop() causes server disconnection

Figure 2. Sequence diagram for stopping a game

2.3 Selecting a Player for Chat Directly

[image: image15.png]CheckBox
setStatef)

Clicks On Note: The browser handles thisuse case automatically. No
events are attached to the CheckB og; its stateis polled

ena chat message s sent.

Figure 3. Sequence diagram for selecting a player for chat directly

2.4 Selecting all Players for Chat

[image: image16.png]Clipp:
ey CheckBox

setState) |

Clicks On
"Select ALl

Note: ActionPerformed in Clipp marks all Checkboxes.

Figure 4. Sequence diagram for selecting all players for chat

2.5 Sending a Chat Message

[image: image17.png]Clipp. CiNet
ActionListener Note: The browser calls actionPerformed) in Clikpp when
chm theuser clicks on the Send button or presses Eater when
ok e o prwrs e the message box has focus.

presses Enter
The relevant portion of ActionListener resets the GUI
elements

Figure 5. Sequence diagram for sending a chat message

2.6 Receiving a Chat Message

[image: image18.png]Cliapp: CiNet
ActionListener Note: The networking thread calls takeAction in CliNet to

crar
4—‘ ’4—‘ ’4— adiress the server request.
Message prints ‘priniChat() from Server &
in window

Figure 6. Sequence diagram for receiving a chat message

2.7 Entering a Move

[image: image19.png]Clisipp:
ItemListener CtiOrderDrop Choice CliGameState
Selects enterDropdownSelection() getPossibleOrdersy) |
dropdown
option pdateDropdowns()
isDropdownéctive()
upateDropdown()
getDropdownContents()
addli
setVisil

Note: itemStateChanged() in Clipp s called when the user
changes a dropdown selection

Note: updateDropdowns) identifies dropdowns that need
10 be redravm, and redrawsthem accordingly.

Figure 7. Sequence diagram for entering a move

2.8 Accepting a Move

[image: image20.png]oy CiOrdeDrop CiGame CliNet

Clicks "Done | ‘getOrder)

cnterOrden) [porn
sendOrder) | [to Server [aman

OrderDrop Exat mossge depends
CorderDrop() onorder type

Note: The browser calls actionPerformed() in CliApp when
the user clicks on the Done button

Figure 8. Sequence diagram for accepting a move

2.9 Ending a Turn

[image: image21.png]Clicks "End
Ton®

DonE

Note: The browser calls setionPeformed() in gy when
the user clicks on the "End Turn” butto

Figure 9. Sequence diagram for ending a turn

2.10 Informed of Another Player Ending Their Turn

[image: image22.png]Clispp:
ActionListener clet

DOl
Icon appears in | | playerDone() ‘from Server
window

Note: The networking thread calls takeAction in CliNet to
address the server request

Note: The PDON message is sent to all players whena
player sends the DONE message

Figure 10. Sequence diagram for informing another player of ending a turn

2.11 Adding or Removing Armies

[image: image23.png]embitimer CliGame CliGameState List
> | -
Clicks on army getédjustOptions() getédjustOptions() —‘
name »
deselect()
(if too many
selected)

Note: The brovwser marks the option s selected; the only
task for client codeis to unselect if necessary.

Figure 11. Sequence diagram for adding or removing armies

2.12 Accepting the Addition or Removal of Armies

[image: image24.png]Clipp. List CiNet
Clicks "End
Tum® hitle clements
gelSelectedlndexes) RA G many)
smdArmyAJus'()'U o Server DONE

Mete The browsercols aeinPertorme) in Clitgp when
the user clicks on the "End Turn" But

Figure 12. Sequence diagram for accepting the addition or removal of armies

3 DATA DICTIONARY

3.1 AdjOrder

AdjOrder is an extension of Order

· Holds the information for a particular order during the army adjustment round.

· Does not hold information about the issuer.

3.1.1 Attributes

	Boolean
	add
	Used to indicate if an order should be added or removed

3.1.2 Methods

public AdjOrder(int, boolean) – Adjustment order constructor. Generates an Add or Remove order for a particular army.

public boolean isAdd() – Identifies whether or not this is an Add order.

public boolean isRemove() – Identifies whether or not this is a Remove order.

public String toString() – Returns a string that is made up of an army command and an army to move.

public static Order valueOf(String) throws ParseException – Parses a string for the network representation of an AdjOrder.

3.2 CliApp

CliApp is an extension of Applet

· Defines the interface for users to connect to the server.

· Allows players to chat.

· Allows players to enter order.

· Allows players to view game state.

3.2.1 Attributes

	CliGame
	game
	Instantiates an interface to gamestate and network

	CliNet
	cliNet
	Instantiates network connection to server

	int
	REGIONS
	Sets the number of territories in the game to 38

	Player
	players
	Allows up to 5 players to join the game

	int
	numPlayers
	How many players have joined the game

	int
	playersDone
	Keeps track of which players are done with a turn at each round

	int
	fastDraw
	Used to see if only small portions of the screen should be redrawn for refresh concerns

	String
	defaultNames
	Used to store defaults names given to players

	Color
	cPurple
	Stores color for team 1

	Color
	cGreen
	Stores color for team 2

	Color
	cOrnage
	Stores color for team 3

	Color
	cYellow
	Stores color for team 4

	Color
	cRed
	Stores color for team 5

	Color
	bColor
	Stores background color

	int
	playerDonePlacement
	Placement of player done images

	int
	supplyDepotPlacement
	Placement of supply depot images

	int
	armyPlacement
	Placement of army images

	ImageWaiter
	imageWaiter
	Used to follow image status from mediatracker and redraw the map

	Image
	buffer
	Used for drawing the map

	Graphics
	gBuffer
	Buffered image used for drawing the whole map

	MediaTracker
	mapTracker
	Tracks image loading status

	Image
	map_Image
	Entire map Image

	Image
	armyImage
	Image used for army icon

	Image
	doneRed
	Image used to show a player is not done with their turn

	Image
	doneGreen
	Image used to show a player is done with their turn

	Image
	homeSupplyDepot
	Image for the home supply depot icon

	Image
	supplyDepot
	Image for the supply depot icon

	Image
	space_Image
	Used for downloading original region images

	Image
	drawMap_Image
	Stores every region image in every color

	Checkbox
	team_Checkbox
	Checkbox used to indicate chat with a particular player

	Label
	team_name
	Displays a team’s name in the team’s represented color

	Button
	selectAll_Button
	Selects all players to chat with

	Button
	send_Button
	Sends a chat message to specific players

	TextField
	chat_TextField
	Chat field for entering messages

	TextArea
	messages_TextArea
	Diplays chat messages

	TextArea
	moves_TextArea
	Displays move history

	Label
	action1_Label
	Label for the first choice component

	Choice
	action1_Choice
	The first choice component in the GUI

	List
	action1_List
	Used to add / remove armies

	Label
	action2_Label
	Label for the second choice

	Choice
	action2_Choice
	The second choice component in the GUI

	Label
	action3_Label
	Label for the third choice component

	Choice
	action3_Choice
	The third choice component in the GUI

	Label
	action4_Label
	Label for the fourth choice

	Choice
	action4_Choice
	The fourth choice component in the GUI

	Button
	done_Button
	Indicate the end of a move when clicked

	Button
	endTurn_Button
	Indicates the end of a turn when clicked

	CliOrderDrop
	orders
	Used to fill in dropdowns during diplomacy stage

	int
	numMovesMade
	Lets the client know how many pieces have been moved

	String
	moveHistory
	Keeps track of move history

	int
	armiesMoved
	Keeps track of which pieces were moved that turn

	String
	piecesMoved
	Keeps track of moves made

3.2.2 Methods

public void actionPerformed(ActionEvent) – Handles events such as button clicks.

public void addPlayer(int, String) – Adds a player to the GUI.

public void addToPlayerName(int,String) – Sets the player of ID to the name passed in.

public void createComponent() – Creates components to be added to the GUI.

public void createGUI() – Sets component attributes and places them in GUI.

public void destroy() – Frees up resources when applet is unloaded.

public void drawPlayersDone() – Draws Images to show that players are done with their turn.

public void drawArmies() – Draws army images on the map.

public void drawSupplyDepots() – Draws the supply depots to the map.

public String getPlayerName(int) – Returns the name of a player given their ID.

public boolean handleEvent(Event) – Handles keyboard events.

public void init() – Applet starting point.

public void endRound() – Disables Controls.

public void startRound() – Enables Controls.

public void itemStateChanged(ItemEvent) – Handles selections made from dropdowns.

public void loadImages() – Initially loads all region images in an array.

public void makeSpaceImages() – Generates colored images from those provided.

public void paint(Graphics) – Draws the buffered image.

public void parseCommand(String) – Parses commands entered in the chat field and performs the requested action.

public void playerDone(int) – Sets which player is done with their turn.

public void printChat(String) – Prints a chat message to the chat screen.

public void printError(String) – Prints an error message to the console.

public void printMove(String) – Prints a move to the move history message box.

public void redraw() – Recreates the map image and draws it on the screen.

public void redrawImages() – Redraws all loaded images.

public void removePlayer(int) – Removes a player from the GUI.

public void run() – Thread entry-point.

public void start() – Starts the runner thread.

public void startGUI() – Initiates all the interface components.

public void stop() – Stops the runner thread.

public void update(Graphics) – Calls paint.

private void updateDropDown(Choice, Label,CliOrderDrop, int) – Updates dropdowns.

private void updateDropDowns() – Updates dropdowns when a selection is made.

public void updateHistory() – Clears the client’s last turns moves from the move history box.

public void updateMoveHistory(String) – Parses a move message to be printed in the move history textarea.

public void updateOrderSelection() – Redraws dropdowns / selection dialog as necessary.

3.3 CliGame

· Used to instantiate cliGameState

· Used as the mediator between the CliGameState and CliApp

3.3.1 Attributes

	CliApp
	cliApp
	Used as a pointer the cliApp that instantiates CliGame

	CliGameState
	gameState
	Used to point to the instantiation of the game state

	int
	numPlayers
	Indicates the number of players the server will be supporting

	int
	myid
	Holds the current players unique id

	int
	adjustArmy
	Tells the client how many armies to add or delete

3.3.2 Methods

public CliGame(CliApp) – Used to construct a CliGame.

public void setMyId(int) – Used to set the current players unique id and create the game state.

public int getMyId() – Access the current players unique id.

public int getRegionColor(int) – Gets the associated regions color. Basically informs of ownership.

public boolean getSupplyDepots() – Access where the supply depots are located.

public int getHomeSupplyDepots() – Access where the home supply depots are located.

public void setPlayerCount(int) – Sets the number of players that will be playing in the game.

public CliOrderDrop getOrderDrop() – Returns a CliOrderDrop object for the current round.

public void addPlayer(int) – Add a player to CliApp.

public void removePlayer(int) – Remove a player from CliApp.

public int getPlayerCount() – Returns the number of players that will be playing in the game.

public void printError(String) – Prints an error message.

public int getArmy(int) – Returns who has an army at the given space.

public void armyChange(int, int, int) – Moves an army piece.

public void armyLost(int) – Passes army loss notification on to the game state.

public void setArmyAdjust(int) – Sets army adjustment amount.

public int getArmyAdjust() – Retrieves army adjustment amount.

public void setRound(Round) – Moves the game into the next round.

public Round getRound() – Returns the current round of the game.

public void updateAdjustmentList(Label List) – Sets up the given Label and List for the adjustment round.

public void adjustItem(ItemEvent) – Processes an ItemEvent for the add/remove selection dialog.

public AdjOrder toOrder(List) – Generates a list of Order objects based on add/remove dialog.

3.4 CliGameState

CliGameState is an extension of GameState

· Holds the game state on the client

· Provides extra functionality not in gamestate that is only needed on the client

3.4.1 Attributes

	int
	id
	Specifies a unique ID of the current player

	Order
	currentOrders
	Holds the players current Orders

3.4.2 Methods

public CliGameState(int,int) – The Constructor.

public int getArmy(int) – Returns the number of the player, if any, with an army at the specified space.

public int getPlayersArmies() – Returns a list of all armies owned by the current player.

public int getLostArmies() – Returns a list of armies lost this turn which may retreat.

public int getAddLocations() – Returns a list of places the player could add Armies.

public ReOrder getRetOrders(int) – Returns a list of retreating options for the given army.

private void setupGpoMemo() – Initialize DipOrder’s.

public DipOrder getPossibleOrders() – Returns all possible orders for the current round.

public DipOrder getPossibleOrders(int) – Returns all possible orders in the current round which can be given to a specific army.

public DipOrder getPossibleOrders(int,Order.Type) – Returns all possible orders of a given type that can be given to a particular army.

public DipOrder getPossibleHoldOrders(int) – Returns all possible hold orders for a given army.

public DipOrder getPossibleMoveOrders(int) – Returns possible move orders for a given army.

public DipOrder getPossibleSupportOrders(int) – Return possible support orders for a given army.

public DipOrder getPossibleSupportOrders(itn,int) – Returns all possible support orders that can be given to a particular army in supporting a particular other army.

public void setRound(Round) – Sets the game to a new round.

public void armyLost(int) – Makrs an army as lost.

3.5 CliNet

CliNet is an extension of Thread

· Provieds methods for UI to communicate with the server via the network

3.5.1 Attributes

	InOut
	server
	Used to in / out message over network

	CliGame
	game
	Used to point to an instantiated game

	String
	srvHost
	Used to store address to host

	int
	port
	Used to store port the server and client run on

	int
	numPlayers
	Used to store the number of players set up for the game

	CliApp
	cliApp
	Points to an instantiated CliApp

	String
	endline
	Used to print an endline with messages over the network

3.5.2 Methods

public CliNet(CliApp, CliGame, URL) – Constructor to initialize the CliNet object and prepare to connect.

public CliNet(CliApp, CliGame, URL, int) – Constructor to initialize the CliNet object and prepare the connection.

public void run() – Method to start a thread to connect tot he server and receive data from it.

public Boolean connect() – Connects to the game server.

public void takeAction(String) – Parses a command received from a server then takes the appropriate action for that command

public boolean sendChat(String, Boolean) – Sends a chat message to the players of the game.

public boolean sendNameChange(String) – Sends a name change to the server.

public boolean sendOrder(Order) – Sends an order entered by the user to the server.

public Boolean sendDone() – Tells the server that no more orders will be sent from the client.

private Boolean sendAck() – Sends an acknowledgement message to the server upon receiving a valid command.

private Boolean sendDenied() – Sends an acknowledgement message to the server upon receiving an invalid command.

3.6 CliOrderDrop

· Keeps track of what content should be displayed in what dropdowns for order selection

· Generates an order object when the time comes.

3.6.1 Attributes

	CliGameState
	state
	Where to get information about possible orders

	int
	dropdown
	Holds contents of each drop down

	int
	selection
	Holds array indices to currently selected dropdown entries

	Boolean
	needsUpdate
	Identifies dropdowns that need to be redrawn

	String
	label
	Identifies the current label for each dropdown

3.6.2 Methods

protected CliOrderDrop(CliGameState, int) – Constructor.

public Boolean isDropDownActive(int) – Identifies if a dropdown should currently be displayed.

public abstract String getDropdownContents(int) – Provides a list of the options for a dropdown.

public static String lookupNames(int,String) – Translates a list of indices into a list of string.

public static String lookupNames(int,String,String) – Translates a list of indices into a list of String, filling invalid indicies with a particular string.

public Boolean dropdownChanged(int) – Identifies if a dropdown needs to be redrawn.

String getDropdownLabel(int) – Provides a label to display near the dropdown.

public void enterDropdownSelection(int,int) – Tells the CliOrderDrop that the user has made a selection on a dropdown.

3.7 CliOrderDropDip

CliorderDropDip is an extension of CliOrderDrop

· Provides specific order-processing functionality to CliorderDrop relating to the Diplomacy stage of the game.

3.7.1 Attributes

	String
	moveNames
	Holds types of moves that can be made

3.7.2 Methods

public CliOrderDropDip(CliGameState) – The constructor.

private String getDropdownContents(int) – Gets the drop down contents for the specified drop down.

public void enterDropdownSelection(int,int) – Performs specified action based on dropdown selected.

private void updateArmy() – Specifies if and which army should be updated.

private void updateOrderType() – Update which order type was specified.

private void updateDest() – Would update destination.

private void updateSupporttree() – Update support tree to show which armies are supporting.

private void updateSupportAct() – Would update support.

private void findOrders(int,Order.Type) – Finds the given order from the possible orders.

public Order getOrder() – Constructs a DipOrder object based on the current dropdown selections, if a complete order has been selected.

3.8 CliOrderDropRet

CliOrderDropRet is an extension of CliOrderDrop

· Proviides specific order-processing functionality to CliOrderDrop relating to the retreating stage of the game

3.8.1 Attributes

None, is created using CliGameState.

3.8.2 Methods

public CliOrderDropRet(CliGameState) – The constructor.

puibic String getDropdownContents(int) – Gets the drop down contents based on specified drop down.

public void enterDropdownSelection(int,int) – Performs specified action based on dropdown selected.

private void updateArmy() – Specifies if and which army should be updated.

private void updateDest() – Would update destination.

public Order getOrder() – Constructs a RetOrder object based on the current dropdown selections, if a complete order has been selected.

3.9 DipOrder

DipOrder is an extension of Order

· Holds the information for a particular order during the diplomacy round

· Does not hold information about the issuer.

3.9.1 Attributes

	int
	dest
	Supporttree for supporting order

	int
	supportaction
	Supported destination

3.9.2 Methods

public DipOrder(int) – Hold order constructor. Generates a hold order for a particular army.

public DipOrder(int,int) – Move order constructor.

public DipOrder(int.int.int) – Support order constructor.

public int getDest() – For move orders, returns the destination; for support orders, returns the supportee.

public int getSupportAction() – For support orders, returns the supported action.

public String toString() – Returns an order in string format that conforms to the net protocol.

public static Order valueOf(String) – Parses a string for the network representation of a DipOrder.

3.10 GameState

· Holds information about the game, on either side of the network connection

3.10.1 Attributes

	String
	spaceNames
	Names of spaces on the map

	Boolean
	adjacent
	Matrix representation of the undirected graph of the map

	int
	numSpaces
	Number of spaces on the map

	Boolean
	depot
	Location of supply depots

	int
	homeSupplyDepots
	Locations of home supply depots

	int
	numPlayers
	Number of players in the game 1-5

	Boolean
	playerIDs
	Indicates presence of each player in the game

	int
	armies
	Indicates what player, if any, holds an army at each space

	int
	spaceOwner
	Indicates what player, if any, owns each space

	int
	turn
	The number of the current turn

	Round
	round
	The current round of the game

	int
	nextArmies
	The army list for the next round

	int
	lostArmies
	Armies lost in the diplomacy round of the current turn

3.10.2 Methods

public GameState(int) – The constructor initializes the game state to the initial state for the specified number of players.

public void setPlayerActive(int) – Called to indicate that a player has joined the game.

public void setPlayerInActive(int) –– Called to indicate that a player has left the game.

public Boolean moveArmy(int,int) – Moves an army on the board.

public Boolean moveArmy(int,int,int) – Moves an army belonging to a particular player on the board.

public void armyLost(int.int) ​– Marks an army as lost.

protected void processRoundStart(Round) – Perform start-of-round bookkeeping.

public Round getRound() – Constructs a Round representing the current round of the game.

public Round getNextRound() – Computes what the next round of the game will be.

public int getTurn() – Returns the current turn of the game.

public int getSpaceOwner(int) – Returns the current owner of a particular space.

puiblic int getPlayerArmies(int) – Returns a list of all armies owned by a particular player.

public String getSpaceNameByNumber(int) – Looks up the name of a space, given its number.

public int getSpaceNumberByName(String) – Looks up the number of a space given its name.

protected int getAdjacentSpaces(int) – Returns a list of spaces adjacent to a particular space.

protected int getReachableSpaces(int,int) – Finds spaces reachable through exactly “depth” graph traversals starting at space.

private int getReachableSpacesDFS(int,int,Boolean) – Runs a Depth First Search.

private int getReachableSpacesMemo(int,int) – Finds space if memorized.

private static String buildSpaceNames() – Builds a list of all the names of regions on the map.

private static Boolean buildAdjacenyList() – Builds adjacency matrix from a (built-in) list of edges.

private Boolean buildDepotList() – Builds a list of which regions have supply depots.

private int buildHomeDepotList() – Builds a list of which regions have a home supply depot.

3.11 InOut

· Provides methods for UI to communicate with the server via the network

· Requires access to an asynchronous Writer class

3.11.1 Attributes

	Socket
	socket
	Defines the socket connections will be made on

	PrinterWriter
	printWriter
	Defines the writer for the socket

	BufferedReader
	in
	Defines where data will be stored when

	Writer
	writer
	Defines what will write data to the network socket

3.11.2 Methods

public InOut(String,int) – Constructor to initialize create an object to handle a TCP connection.

public void println(String) – Prints a line over an already initialized object.

public void write(String) – Writes data over an already initialized object.

public String readLine() – Reads a lone from an already initialized object.

public void close() – Closes the data stream and all objects associated with it.

3.12 Order

· This class holds the information for a particular order, except who issued/will issue/is issuing it.

3.12.1 Attributes

	Type
	HOLD
	A hold order in the diplomacy round

	Type
	MOVE
	A move order in the diplomacy round

	Type
	SUPPORT
	A support order in the diplomacy round

	Type
	RETREAT
	A retreat order in the army adjustment round

	Type
	ADD
	An add order in the army adjustment round

	Type
	REMOVE
	A remove order in the army adjustment round

	Type
	type
	The type of this order

	int
	army
	Indicates which army the order is given to

3.12.2 Methods

public String toString() – Provides a String representation of the order type.

public Type getType() – Returns a type object representing the type of this order.

public int getArmy() – Returns the number of the army this order is given to.

public abstract String toString() – Returns a String with the network representation of this order.

public static Order valueOf(String) – Parses a string for the network representation of an Order.

protected static int getNextInt(StringTokenizer) – A utility function that parses the next token from a stringtokenizer.

3.13 RetOrder

RetOrder is an extension of Order

· Holds the information for a particular order during the order resolution / retreating round

· Does not hold information about the issuer

3.13.1 Attributes

	int
	dest
	Holds the destination

3.13.2 Methods

public RetOrder(int,int) – Retreat order constructor.

public int getDest() – Returns the destination the army is to retreat to.

public String toString() – Returns a message that makes up a retreat order.

public static Order valueOf(String) – Parses a string for the network representation of a RetOrder.

3.14 Round

· Round is an enum class for the three rounds of the game

3.14.1 Attributes

	String
	ID
	Holds the round

	Round
	DIPLOMACY
	The diplomacy round

	Round
	RESOLUTION
	Order resolution and retreating round

	Round
	ADJUSTMENT
	Army adjustment round

3.14.2 Methods

private Round(String) – The Constructor.

public String toString() – Provides a String representation of the round.

3.15 Server

· This class holds the main function for the server. It contains code to listen for network connections and dispatch them to ServerReaders.

3.15.1 Attributes

	int
	defaultMaxConnections
	The maximum number of connections, if none is specified on the command line.

	int
	defaultListeningPort
	The listening port to use, if none is specified on the command line.

	int
	maxConnections
	The actual maximum number of connections

	int
	listeningPort
	The actual port to listen on

	ServerGame
	game
	The serverGame object to register readers with

	ThreadGroup
	children
	A ThreadGroup to hold the child threads in.

	InetAddress
	clientIPs
	IP Addresses of connected clients

3.15.2 Methods

public static void main(String[]) – The main method executed by the JVM

public void run() – Method to actual handle listening socket and incoming connections.

private static int findIndex(InetAddress, InetAddress[], ServerGame, int) – Determine the number of a newly connected player

3.16 ServerGame

3.16.1 Attributes

	int
	defaultNumPlayers
	The default number of players, when using the default constructor

	String
	newline
	End-of-line (CRLF) for network transmission

	Writer[]
	writers
	Holds Writer objects to write to clients

	int
	numPlayers
	Number of players in the game

	ServerGameState
	state
	Hold game state information

	Thread
	monitor
	The thread of the listening socket.

	Runnable
	monitorRunnable
	The Server object used for listening

	String[]
	playerNames
	Names of players in the game

3.16.2 Methods

public ServerGame() – Sets up a game with the default number of players and no monitor.

public ServerGame(int) – Sets up a game with the specified number of players and no monitor.

public ServerGame(int, Runnable) – Sets up a game with the specified number of players and the specified monitor.

public void registerNewReader(OutputStream, int) – Sets up a new player connection

public void unregisterReader(int) – Clean up a disconnected player

private boolean tryWrite(int, String) – send a message to a particular player

private boolean tryWrite(boolean[], String) – Send a message to a set of players

private boolean tryWriteAll(String) – Send a message to all players

public int getNumPlayers() – Returns the number of players

public boolean getPlayerStatus(int) – Returns the connectedness of a particular player

public void sendNewName(int, String) – Broadcasts the changed name of a player.

public void sendError(int, String) – Send an error message to a player

public void sendChat(int, boolean[], String) – Broadcast a chat message

public void recieveOrder(int, Order) – Store an order received from a player.

public void recieveEndTurn(int) – Process an end-turn message from a player.

private void processRoundEnd() – Perform end-of-round processing.

3.17 ServerGameState

3.17.1 Attributes

	boolean[]
	endedTurn
	Tells which players have sent DONE messages

	Order[]
	currentOrders
	Holds currently received orders

	int[]
	adjustLimit
	Specifies by what amount each player should adjust their armies.

	AdjOrder[][]
	adjustOrders
	Hold currently received army adjustment orders.

3.17.2 Methods

public ServerGameState(int) – New game state with a specific number of players.

public boolean makeOrder(int, Order) – Enter an order from a player.

public boolean orderOK(int, Order) – Determine if a particular player may make a particular order

private boolean orderOK(RetOrder) – Determine if a RetOrder is valid (for any player)

private boolean orderOK(RetOrder, int) - Determine if a RetOrder is valid (for a particular player)

private boolean orderOK(AdjOrder, int) – Determine if an AdjOrder is valid for a particular player.

public boolean endedTurn(int) – Note a player’s DONE message.

public boolean allDone() – Determine if all players have indicated their round completion.

public RoundChange endRound() – End the current round.

private RoundChange endRoundDiplomacy() – End the current round, if it is a Diplomacy round.

private void identifySuccess(int, boolean[], int, Boolean[], boolean[], int[], int[]) – Helper function to endRoundDiplomacy, to implement recursion.

private RoundChange endRoundResolution() – End the current round, if it is an Order Resolution / Retreating round.

private RoundChange endRoundAdjustment() – End the current round, if it is an army adjustment round.

private void computeRemoveOrders(int, AdjOrder[], int[]) – Add extra remove orders, if a player failed to specify enough.

private int[] startRoundAdjustment() – Determine the extent to which each player must adjust their armies.

private void resetOrders() – Restore order attributes to their default state.

3.18 ServerReader

ServerReader implements Runnable

· ServerReader is the input side of the server

· It waits on the inputStream and parses incoming messages as they arrive before handing them off to serverGame

3.18.1 Attributes

	InputStream
	input
	Used to store input read from stream

	int
	myNum
	Used to store id of player sending the message

	ServerGame
	gameData
	Used so that messages can be handed off after being parsed

	String
	cr
	Carriage return

	String
	lf
	Line feed

3.18.2 Methods

public ServerReader(Socket,int,ServerGame) – The only constructor. Registers with the ServerGame.

public void run() – Actually waits for and processes input. Reads from the input stream a line at a time.

private void takeAction(String) – Figures out the message type and dispatches it accordingly.

private void parseChatMessage(String) – Will send chat message to specified players in String message.

private void parseOrderMessage(String) – Will send an order message with the senders id.

3.19 Writer

Writer is an extension of Thread

· Used to write asynchronously to network sockets

· Write commands are buffered for later transmission

· Exceptions that occur during transmission are stored and then thrown from later write commands.

3.19.1 Attributes

	StringBuffer
	inputBuffer
	Holds data that is to be buffered on input

	StringBuffer
	outputBuffer
	Holds data that is to be buffered on output

	BufferWriter
	writer
	The writer that will be doing the transmissions

	IOException
	exception
	Used to catch exceptions

3.19.2 Methods

public Writer(OutputStream stream) – The constructor takes only the OutputStram to be written to.

public void write(String) – Saves data for later transmission.

private void rebuff() – Copies the input buffer to the output buffer.

private int inputLenth() ​– Returns the length of the current input.

public void run() – Run the separate thread. This function writes data to the output stream as long as more data remains.

